SEM 2, 2023-24: TOPOLOGY END-SEMESTRAL EXAMINATION

Max score: 50 marks. Time: 3 hours.

Do any 5. Strike out the ones that you don't want graded. Otherwise only first 5 would be graded. State clearly any result that you use.

- (1) For $k = \mathbb{R}$ or \mathbb{C} , let $M_n(k)$ denote the set of all $n \times n$ matrices with values in k. Let $GL_n(k) := \{A \in M_n(k) : \det(A) \neq 0\}$. (8 + 2 marks)
 - (a) Consider M_n(ℂ) with euclidean topology under the identification M_n(ℂ) ≃ ℝ^{2n²}. Show that GL_n(ℂ) is path-connected in the subspace topology.
 - (b) Show that $GL_n(\mathbb{R})$ is not connected.
- (2) Let $I_1 = I_2 = [-1, 1]$ be two copies of the closed interval. Let X be the quotient space of $I_1 \coprod I_2$ where each point of I_1 except 0 is identified with the corresponding point of I_2 . Is X (4 × 2.5 marks)
 - (a) compact?
 - (b) Hausdorff?
 - (c) connected?
 - (d) metrizable?
 - Justify your answers.
- (3) Recall that a topological space is said to be normal if its points are closed and any two disjoint closed sets can be separated by neighborhoods. (5+5 marks)
 - (a) Prove that every compact, Hausdorff topological space is normal.
 - (b) Prove that a connected normal space with more than one point must be uncountable.
- (4) Let (X, τ) be a compact Hausdorff space. Let τ_1 be a topology on X which is strictly finer than τ and τ_2 a topology on X which is strictly coarser than τ . Show that (5+5 marks)
 - (a) (X, τ_1) is not compact and
 - (b) (X, τ_2) is not Hausdorff.
- (5) Let X and Y be topological spaces and let $Y^X = \text{Cont}(X, Y)$ denote the set of all continuous functions $X \to Y$. Consider Y^X with the compact-open topology, that is the topology generated by the subbasis consisting of sets of the form $S(C, U) = \{f : X \to Y | f(C) \subset U\}$, where C runs through all compact subsets of X and U runs through all open subsets of Y. (4+6 marks)
 - (a) Let X be locally compact and Hausdorff. Show that the evaluation function $e: Y^X \times X \to Y$ defined by e(f, x) = f(x) is continuous.
 - (b) Let X, Z be Hausdorff and Z be locally compact. Show the exponential law: there is a natural function $Y^Z \times X \to (Y^Z)^X$, which is a homeomorphism.

Date: 22-04-2024.

END-SEMESTRAL EXAMIMATION

- (6) Prove that a connected open subset X of \mathbb{R}^n is path-connected using the following steps: (4+4+2 marks)
 - (a) For any $x \in X$ let U(x) be the set of all points in X that can be connected to x with a path. Prove that U(x) is open, by showing for each $y \in U(x)$ there is an $\epsilon > 0$ such that $B_{\epsilon}(y) \subset U(x)$
 - (b) Prove that U(x) is closed by showing its complement is open.
 - (c) Conclude X is path connected.